
To Draw the Shortest Line Between Two
Points on an Arbitrary Curved Surface

Johannis Bernoulli

1728

∗ Let AE = x, EB = y, and from the point B is understood to be
erected the line Bb = z, normal to the plane AEB and meeting the surface
of the curve at b, and let there be given an arbitrary equation expressing
the relationship of the three coordinates x, y, z, where the relationship is
determined by the nature of the surface.

Now the line sought for will be lbc, from each of whose points l, b, c is un-
derstood to be dropped to the underlying plane AEB the normals lL,bB, cC,
forming the projection [of the desired curve ] LBC. Let the plane IBb, whose
common section with the plane AEB, which is the line IB, touches there-
fore the projection LBC in the element BC, hence the plane IBb touches
the sought-for curve in the element lbc.

Also let the plane bGI be conceived as tangent to the curved surface t b,
and meeting the plane AEB in the common section GI, and [because each
of the planes bGI and IBb touches the sought-after curve in the element bc],
there will be extension of the same element bc, and will exactly connect with
the curve in this element. Let BE be produced, so long as the segment IG
runs to G, and from the point G let fall to BI the normal GH, which will
then be perpendicular to the plane IBb. From the point H let the normal
Hh be dropped to the line bI, and from the point b to the line cC the normal

∗The Author communicated this Solution to Cl. Klingenstierna, Professor of Maths
at the University of Upsala, before the end of the Year 1728; later the same Klingen-
stierna transcribed it to paper, so that it would be preserved.
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bc. This being done, call

EF = BD = dx,

DC = dy,

BC = bc =
√
x2 + y2 = ds,

ce = dz,

touching below BG, which from the nature of the surface given in x, y, and
z, = T .

The basis of the solution consists in this, that the plane crossing through
three infinitely close points on the sought-for curve is orthogonal to the plane
tangent to the curved surface. And so what is sought are two angles: one
which the tangent plane bGI makes with the plane IBb , the other that the
plane through three points of the desired curve makes with the same plane
IBb. Having found these angles, it is determined that their sum must equal
a right angle and the equation of the Problem will be considered solved.

Here is the procedure for this purpose. Because of the similarity of the
triangles CBD,BGH,

CB:BD = BG:GH, or ds: dx = T :GH, whence GH = T dx: ds.

Because of the similarily of the triangles BCD, GBH,

BC:CD = GB:GH, or ds: dy = T :BH, whence BH = T dy: dx.

Because of the similarity of the triangles ceb, bBI,

ce: eb = bB:BI or dz: ds = z:BI, whence BI = z ds: dz.

From BI is subtracted BH, giving

IH = z ds: dz − T dy: ds.

Because of the similarity of the triangles bce, IHh,

bc: ce = IH:Hh, or
√
ds2 + dz2: dz =

(
z ds

dz
− T dy

ds

)
:Hh,

whence

Hh =

(
z ds

dz
− T dy

ds

)
× dz:

√
ds2 + dz2 =

(
z ds2 − T dy dz

)
: ds
√
ds2 + dz2.
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Now because GH is normal to the plane IBb and Hh normal to the line
bI, which is the section common to the planes IBb and bGI, the triangle HhG
will be orthogonal to each of the planes IBb and bGI, and indeed, because of
the right angleGHh, hH:HG = radius: tangent of the angle of inclation HbG.
And consequently , taking unity for the radius, the tangent of the angle of
inclination HhG will be

HG

Hb
=
T dx

√
dss + dz2

z ds2 − T dy dz
.

The other angle, which the plane passing through three infinitely close
points of the desired curve lbc makes with the plane IBb, is now investigated.

In the projection LBC [Fig. 2, conceived as an infinitely small portion
of the cylindroidal surface, flattened on the line bB, so that LB and BC are
two elements of the curve LBC, which is the basis of the cylindroid] are three
points L,B,C whose distances are equal and infinitely small; and there be
the three correponding points l, b, c in the sought-for curve through which
the said plane passes. Let LB be produced to ζ [Fig. 3] and lb to β, so that
Bζ = BC, and bβ = bc = bp, and the remainder being made, as in the figure,
and LB = BC = ds being assumed constant, we shall have fe = −d dz, and
because of the similiarity of the triangles bce, fcp,

bc: be = fc: cp, or
√
ds2 + dz2: ds = −d dz: cp,

whence cp = −ds ddz:
√
ds2 + dz2.

In order that pβ, or that which ought to be considered equal to Cζ, be
discovered, let the projected curve be LBC, [Fig. 3] BC = ds, BD = dx,
CD = dy, the tangent to B the line Bζ, to which from the point C falls the
normal Cζ and from the point ζ to CD the normal ζO.

Because of the similarity of the triangles BCD and ζCO,

BD:BC = CO:Cζ, or dx: ds = d dy:Cζ, whence Cζ = ds ddy: dx = pβ.

Now since cp and cβ are normal to bc, which is a common segment of
the planes IBb or CBb, and of the plane passing through the three points
l, b, c, the triangle cpβ will be in the plane normal to each of these planes,
and because the angle cpβ is right, we shall have cp: pβ = radius: tangent of
the angle of inclination pcβ. So, taking unity for the radius, the tangent of
the angle of inclination pcβ will be

pβ

cp
=

ds ddy: dx

−ds ddz:
√
ds2 + dz2

=
−ddy

√
ds2 + dz2

dx ddz
.
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Because therefore, by the prior foundation of the Solution, the sum of the
angle pcβ+ and the angleHbG [Fig. 1] is a right angle; the product of the tan-
gents of the angles will be = the square of the radii = 1. Hence, the tangent of
the angle pcβ, just now found, −d dy

√
ds2 + dx2: dx ddx in the tangent of the

angle HhG, which was found above to be T dx
√
ds2 + dz2: (z ds2− T dy dx),

is obtained the equation satisfying the problem:

T dx
√
ds2 + dz2

s ds2 − T dy dz
× −d dy

√
ds2 + dz2

dx ddz
= 1,

or (ds2 + dz2)T ddy = (T dz dy − z ds2) ddz.

Scholium I∗

This is to be noted, which Cl. Klingenstierna disregarded, that the given
curved surface can of course also be considered cut by the planes parallel
to AE itself crossing through the point B and perpendicular to the plane
AEB, which cuts make in the curved surface, other given curved lines whose
subtangents to each point lookng B, are said to = θ. Where changing T into
θ, dy to dx, and ddy to ddx, will appear this other equation satisfying the
Problem

(ds2 + dz2)θ ddx = (θdz dx− z ds2) ddx;

or since −dx ddx = dy ddy, multiplying by −T dx: dy will produce

(ds2 + dz2) θ T ddy =
(
−θ T dz dx2: dy + Tz dx ds2: dy

)
ddx.

On the other hand, as is easily demonstrated, it can generally be described
for any desired curve on the surface, that

θ dy + T dx

θT
=
dz

z
, or θT dz = θz dy + Tz dx,

where substituting of this value for θT dz, in the previously found equation,
results in

(ds2 + dz2)θT ddy = (−θz dx2 − Tz dx3: dy + Tz dx ds2: dy) ddz

∗Of these Notes, this and the following are the words of the Author himself
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and substituting dy2 for ds2 − dx2,

(ds2 + dz2)θT ddy = (−θz dx2 + T dx dy)z ddx.

then, having put again in the place of θT and z, their proportionals θ dy+T dx
and dz, the equation is changed into

(ds2 + dz2)× (θ dy + T tx) ddy = (−θ dx2T dy dx) dz ddz,

that is,

dz ddz

ds2 + dz2
=

θ dy + T dx

−θ dx+ T dy
× ddy

dx
=

θ ddx− T ddy
θ dx− T dy

.

Note. The same equation is also immmediately deduced from the first dis-
covered

(ds2 + dz2)T ddy = (T dz dy − z ds2) ddz.

Indeed, multiplying by θ, and afterwards substituting for θT dx its value
θz dy + Tz dx, derived from

(ds2 + dx2)θT ddy = (θz dy2 + Tz dydx− θz ds2) ddz

or, since dy2 − ds2 = −dx2,

= (−θ dx2 + T dy dx)z ddx;

and I write θ dy + T dx and dz for θT and z, these being proportional; we
have

(ds2 + dz2)× (θ dy + T dx) ddy = (−θ dx2 + T dy dx) dz ddz,

and thus, as before,

dz ddz

ds2 + dz2
=

θ dy + T dx

−θ dx+ T dy
× ddy

dx
=
θ ddx− T ddy
θ dx− T dy

.

For the three coordinates x, y, z we write t, x, y; this be the an equation
expressing the nature of the curved surface, as did Cel. Euler, with P dx =
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Qdy + Rds; (putting ds = 0) it becomes P dx = Qdy; and indeed, P :Q =
dy: dx = y:T , where T = Qy:P ; now taking dx = 0, it will be Qdy = −Rdt,
that is, −R:Q = dy: dt = y: θ, thus θ = −Qy:R. Therefore, in my formula,

dz ddz

ds2 + dz2
=
θ ddx− T ddy
θ dx− T dy

,

if for x, y, z, T, θ, are written respectively t, x, y,Qy:P,Qy:R, and for ds,
which for me is supposed constant, is put

√
ds2 + dx2, this result is produced:

P ddt+Rddx

P dt+Rdx
=

dy ddy

dt2 + dx2 + dy2
.

If in my earlier equation (ds2 + dz2)T ddy = (T dz dy = z ds2) ddz is
applied to the Eulerian letters, and for T is written Qy:P , the somewhat
simpler equation

Qddx

Qdx dy − P dt2 − P dx2
.

emerges.
In another note, the method shown above, (ds2 + dz2)θ ddx = (θ dz dx−

z ds2), employed on the other hand by Euler, writing −Qy:R for θ, results
in an equation differing very slightly from the previous:

Qdds

Qdt dy +Rdt2 +Rdx2
=

ddy

dt2 + dx2 + dy2

But if it is compared to the previous section of these two equations,
the equation will return expressing the nature of the surface of the curve,
P dx = Qdy + Rdt, clearly necessary to happen; indeed, the two equations
are equivalent.

Scholium II

The method, up to this point explained for solving the Problem of the Short-
est Line drawn on a given surface, is also servicable of this method for the
solution of other difficult problems of this kind, to which the common meth-
ods perhaps only with difficulty, or completely fail to reach. For example the
following is proposed:

Problem: To draw on a given surface a curved line, so that at an arbi-
trary point, the osculating plane has a given inclination to the tangent plane
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of the surface at the given point. Here I call the oscillating plane that which
crosses through three points, infinitely close to one another, on the desired
curve.

Solution: If the angle of inclination is entirely right, this Problem co-
incides with the preceeding: namely, it is the sought-for shortest curve itself,
for which we gave the equation. It is truly now that oblique angle of the
inclination, whose given tangent is = n. It follows from my Theorem in Actis
Lips. 1722, published in the month of July, that if the tangents of two angles
are a and b, the tangent of the sum of the two will be = (a+ b)(1− ab), evi-
dently having selected unity for the total sine, or the tangent of the semi-right
angle.

Since, therefore, the our angle of inclination is known, in the preceding
Solution, to depend on the two parts, of which the one for the tangent has

a = T dx
√
ds2 + dz2: (z ds− T dy dz);

the tangent of the other is certainly

b = −d dy
√
ds2 + dz2: dx ddz;

these being substituted into (a+b): (1−ab) and because it comes out equalling
n itself, it will be reasoned that

n =

(
T dx
√
ds2 + dz2

z ds2 − T dy dx

)
+

(
−ddy

√
ds2 + dz2

dx ddz

)

1 +

(
T ddy × (ds2 + dz2)

z ds2 ddz − T dy dz ddz

) ,

or

T dx
√
ds2 + dz2

z ds2 − T dy dx
+
−ddy

√
ds2 + dz2

dx ddz

=
nz ds2 ddz − nT dy dz ddz + nT ddy(ds2 + dz2)

z ds2 ddz − T dy dz ddz
.

The former member being reduced to a common denominator, and each
term of the latter multiplied by dx, so that these members have a common
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denominator, where then neglected, it results that(
T dx2 ddz − z ds2 ddy + T dy dz ddy

)
×
√
ds2 + dz2

= nz ds2 dx ddz − nT dy dx dz ddz + nT dx ddy ×
(
ds2 + dz2

)
.

Any equation, if treated as was done above in the Note after Scholium I,
will be (destroyed/elicited), the operation being duly carried through to the
end, this other equation:(

θ dx dy ddx+ T dx2 ddz − θ dx dz ddy + T dx dy ddy
)√

ds2 + dz2)

= nθ dz ddz − nT dx dy dz ddz + (nθ dy ddy + nT dx ddy)(ds2 + dz2).

Therefore either of these two equations satisfies the Problem.

Corollary

Given the special case, in which the equation found above,

(ds2 + dz2)T ddy = (T dz dy − z ds2) ddz.

can be reduced to its principle distinguishing characteristics. If for example
the given curved surface of its nature, as all of its sections, the plane is made
normal to the segment AE, then the straight lines are parallel to the ordinate
EB, the surface of whose kind can be called cylindroidal. In this case, the
subtangent T avoids infinity; and to such a degree z ds2 infinitely small, with
regard to T dz dy. And so, with z ds2 deleted, and the remaining terms of
the equation divided by T , the result is

(ds2 + dz2) ddy = dz dy ddz,

where

ddy: dy = dz ddz: (ds2 + dz2);

and multiplying by 2,

2 ddy: dy − 2 dz ddz: (ds2 + dz2),
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and having supposed of the integrals by logarithms ln dy2 − l(ds2 + dz2),
and passage being made to the numbers, n dy2 = ds2 + dz2. Because in this
case z is given by x and constants, having set dz = p dx, understanding by
p whatever quantity be given in x and constants, and for ds2 is written its
value dx2 + dy2, and having changed the equation found into this

n dy2 = dx2 + dy2 + pp dx2

or

(n− 1) dy2 = (1 + pp) dx2,

and extracting the square root,

dy
√
n− 1 = dx

√
pp+ 1.

Now it is manifest, the member of this last equation dxpp+ 1 to designate
the element of the arc of of the curve, whose coordinates are x and

∫
p dx,

or z; it is of the generating curve of the Cylindroid. And so, if that arc is
called A, it will be that dy

√
n− 1 = dx

√
pp+ 1 = dA, and having obtained

the integrals y
√
n− 1 = A; is is the ordinate of the projection to the arc of

the generating curve of the Cylindroid, as 1 to
√
n− 1, or in constant ratio,

which from elsewhere is not difficult to deduce, and confirms the validity of
the preceding Solution.

Scholium III

It is possible to arrive by a more elegant manner to our equation discovered
above [in Scholium I],

dz ddz

ds2 + dz2
=
θ ddx− T ddy
θ dx− T dy

,

without the laborious computation of the angle of inclination HhG, which
certainly the plane tangent to the surface curve bIG makes with the plane
bBI. Towards this goal, using imagination, paying attention to both Figures
1 and 2, where the subject plane into which the curve of projection LBC
is called horizontal; certainly the plane bIB touches sought-for curve in the
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element bc; in addition I shall name the continuation vertical; the plane
containing the three points cBI, that is, call the plane of the triangle cβb,
as before, the osculating plane. Now because the ocsculating plane should
be perpendicular to the tangent plane [of the] curved surface, and because
cβ is perpendicular to either of the two planes [with] common section bβ,
the line cβ will be perpendicular to the sample surface tangent plane. And
so because if the line cβ is continued downard, until it meets the horizontal
plane in the point P , from which towards the extremities of the subtangent
G and M , are drawn lines PG and PM , are held two triangles PcG and
PcM , right angled in internal point c; indeed, the plane McG is tangent to
the surface, to which the normal is cP , and in fact

ang.PcG = right = ang.PcM ; thus PG2 − cG2 = Pc2 = PM2 − cM2.

It is true that

cG2 = CG2 + cC2 and cM2 = CM2 + cC2,

which values being substituted and deleting the common factor Cc2,

PG2 − CG2 = PM2 − CM2.

Now having considered that PR is itself parallel to MC, or perpendicular to
GC produced, it is revealed that ( of course the angle GCM is right ), and
PS is itself parallel to GC, or perpendicular to MC; certainly

PG2 − CG2 = PC2 + 2CG · CR, and PM2 − CM2 − PC2 = 2CM · CS,

whence

CG · CR = CM · CS, or CS:CR = CG:CM,

that is, the sides of the rectangular parallelogram RS are themselves recipro-
cally proportional to the subtangents. From this it follows that the tangent
of the angle RCP is

RP

RC
=
CS

CR
=

CG

CM
=
T

θ
.

It is understood furthermore in Fig. 2, that the smaller side pc in the
vertical plane is continued downward into the horizontal plane which occurs
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at the point V . [Fig. 4]. Let the lines cV and CV be drawn. First, cV P
is a right triangle at V and similar to cpβ itself, because both PV and pβ
are horizontal, lying in the common plane cpβ, and also parallel; in fact, the
plane cV P is nothing more than a continuation of the plane cpβ. Second, CV
is a continuation of the element BC, or a tangent of the projection LBC of
the curve. And therefore, in order that the angle RCV be found, this is [Fig.
1] the angle BCD, whose tangent = BD

DC
= dx

dy
; thus appears. The angle CV P

is right; the proof of this is easily imagined; and with cV P being also right,
it will be, on account of the common side PV , that the tangent of the angle
V cP to the tangent V CP as V C to V c, which equals (since the right triangle
cCV is similar to the right triangle bec in Fig. 2) ec: bc = dz:

√
ds2 + dz2.

And so, because the tangent of the angle V cP , or

pcβ =
pβ

pc

which equals, as found above [in Corollary I to Scholium I]

−ddy
√
ds2 + dz2: dx ddz.

Now certainly from knowledge of the tangent of the two angles RCP and
V CP , by the help of my theorem presented in Act. Lips. 1722, the tangent
of the angle composed from those RCV , or from that which is opposed to the
vertex BCD, each has tangent dx

dy
, certainly the tangent of the angle RCV

will be

T

θ
+
−ddy(ds2 + dz2)

dz dx ddz
:

(
1 +

T ddy(ds2 + dz2)

θ dz dx ddz

)
or

T dz dx ddz − θ ddy(ds2 + dz2)

θ dz dx ddz + T ddy(ds2 + dz2)
,

which reduces to

dz ddz

ds2 + dz2
=

θ dy + T dx

−θ dz + T dy
× ddy

dx
,
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which, since ddy
dx

= −ddx
dy

, equals

θ ddx− T ddy
θ dx− T dy

,

as was found by the first method. [In Scholium I, before the Note.]

Coroll. I

In the case of the Cylindroid, where one or the other of the subtangents, e.g.,
CM , becomes infinite, CR and RP will have an infinite ratio; that is, the
angle RCP vanishes, from where it is made of such size

dx

dy
= tangent of angle V CP =

−ddy(ds2 + dz2)

dz dx ddz
,

which immediately gives

dz ddz

ds2 + dz2
=
−dy ddy
dx2

=
ddx

dx
,

which is the same equation which was considered in the above Corollary,
except where that was x this is y. The rest is completed as in that place.

Coroll. II

In the case of the Conoid, where Cc is parallel to the axis, through which and
through the axis itself crosses the plane cCG, but the planes parallel to the
base form circles on the curved surface, so that once again the subtangents
CM avoid infinity. And also by this way is made [see Fig. 5] BD

CD
= tangent

of the angle V CP . That is true here[−dx is selected, because, if x and y be
increasing, it is assumed that z is decreasing.]

ec : bc = −dz:
√
s2 + z2 = tanV cP : tanV CP.

But the tangent of angle V cP , or pcβ, is

pβ

pc
=

(y ddx+ 2 dy dx)×
√
ds2 + dz2

dy dz ddz
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so that the lower is pointed out

Hence the tangent of angle V CP equals

(y ddx+ 2 dy dx)×
√
ds2 + dz2

dy dz ddz
=
BD

CD
=
y dx

dy
,

and from its reduction emerges

dz ddz

ds2 + dz2
=
y ddx+ 2 dy dx

y dx
.

Integrating with logarithms, and then transiting to numbers, gives yy dx =
b
√
ds2 + dy2 . Truly, in order that this also not be made a laborious work,

by the discovery of the angle of the surface tangent plane and the vertical
plane.

Application of this method to the Conoidal Surfaces; or such that, by an
arbitrary change to the curve of whatever any given position around the given
axis is produced.

Let the vertex of the Conoid be a; the sought-for curve be lbc. From the
vertex a, and from each of the points l,b,c, etc., of the curve, are understood
to fall to the underlying plane normal to the axis aA, perpendiculars aA,
lL, bB, cC, etc. forming [Fig. 5] the projection of the vertex A and the
projection LBC of the desired curve. By the center A, and an arbitrary
radius AK = 1, are described in the said plane to the axis aA of the Conoid,
a true circle KEF , and lines ABE, ACF are drawn, meeting the projection
LBC in the infinitely close points B,C, and the circumference KEF in E,
F . Furthermore, let the plane IBb be conceived, whose common section with
the plane BAK is the line IB, to touch the projection LBC in the element
BC; whereby the plane IBb itself grazes the desired curve in the element
bc. Furthermore, let the plane bGI be conceived as tangent to the Conoid
in b, and meeting the plane BAK in the common section GI, and the plane
IBb in the common section bI, which because whichever of the planes bGI
and IBb meets the desired curve in the element bc, there will be produced
of the same element bc, and indeed touches the curve in this element. Let
AE be produced until the section IG meets in G; and the angle AGI will be
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right. From the point G let the normal GH be dropped to BI, which then
will be perpendicular to the plane IBb; from the point H let the normal Hb
be droppd to bI, and joined with Gb, and finally from the point c let the
normal ce be dropped to bB. These being done, and calling the arc KE = x,
EF = dx, AB = y, DC = dy, BD = y dx, BC =

√
dy2 + yy dx2 = ds,

Bb = z, bc = −dz, T = the subtangent BG from the nature of the Conoid.
Because of the similarity of triangles CDB,BHG,

CB:BD = ds: y dx = BG:GH = T :GH, whence GH = Ty dx: ds.

Because of the similarity of triangles CDB,IHG,

CD:BD = dy: y dx = GH:HI =

(
Ty dx

ds

)
:HI, whence HI = Tyy dx2: ds dy.

Because of the similarity of triangles bec,HhI,

bc: be =
√
ds2 + dz2: (−dz) = HI:Hh =

(
Tyy dx2

ds dy

)
:Hh, whence

Hh = Tyy dx2 dz : ds dy
√
ds2 + dz2.

Now, because GH is normal to the plane IBb, and Hb normal to the line
bI, which is the common section of the planes IBb and bGI, the triangle HbG
will be in a plane orthogonal to either of the planes IBb and bGI, and indeed
because the angleGHb is right, bH:HG = radius: tangent of the angle HhG of inclination.
And so, assuming unity for the radius, the tangent of the angle of inclination
HhG will be

=
HG

Hh
=

Ty dx: ds

−Tyy dx2 dz: ds dy
√
ds2 + dz2

=
−dy
√
ds2 + dz2

y dx dz
.

Another angle, which the plane through the three infinitely close points
lbc of the desired curve makes with the plane IBb, is thus to be investigated.
[ See Figs. 6 and 7, which are derived from the image of figure 2, an infinitely
small part of the surface of the cylindroid.]

In the projection LBC, there are three points L,B,C, of whose distances
LB, LC, are equal and infinitely small; and there are in the desired curve lbc
three corresponding points l,b,c, through which passes the said plane. Let
LB be produced to ζ, and lb to β, so that Bζ = BC, and bβ = bc = bp. In
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order that the rest be in the Figure, and set LB = BC = ds constant; then
lg = bm = −dz, and me = fc = −ddz.

On account of the similitary of the triangles fmb, cpf ,

bf : fm = fc: cp or
√
ds2 + dz: ds = −ddz: cp,

whence

cp = −ds ddz:
√
ds2 + dz.

In order that pβ be found, or that which should be thought equal, Cζ,
be in Fig. 7, the projected curve LBC, the center A, the tangent to C line
CP and the tangent to B line BO, in which are falling from the center A
the perpendiculars AP and AO, and in OB is produced the normal Cζ.

On account of the similitary of the triangles BCD,BAO,

CB:BD = BA:AO, or ds: y dx = y:AO,

whence

AO = yy dx: ds,

and supposing a difference, setting ds constant

dAO = oP = (yy ddx+ 2y dx dy) : ds.

On account of the similitary of the triangles BCD,BAO,

BC:CD = AB:BO, or ds: dy = y:BO,

whence

BO = y dy: ds.

On account of the similitary of the triangles BoP ,BCβ, Bo or

βo: oP −BC:Cζ, or

(
y dy

ds

)
:

(
yy ddx+ 2y dx dy

dx

)
= ds:Cζ,
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and thus

Cζ = pβ = (y ds ddx+ 2 dx dy) : dy.

Now because cp and cβ [Fig. 6] are normal to bc, which is the common
line of the planes IBb, or CBb, and the plane through the three points l,
b, and c, of crossed over, the triangle cpβ in the plane orthogonal to either
of those planes will be right, and since the angle cpβ is right, cp: pβ equals
radius: tangent of the angle pcβ of inclination. And supposing unity for the
radius, the tangent of the angle of inclination pcβ will be

pβ

cp
=

(y ds dds+ 2 dx dy ds) : dy

−ds ddz
√
ds2 + dz2

=
(
y ddx+ 2 dy dx)

√
ds2 + dz2

)
:−dy ddx.

And so, because angle pcβ + angle HhG is right, the product of the tan-
gents = the square of the radius = 1; whence the tangent drawn by the
method shown the angles pcβ, (y ddx+ 2 dy dx)

√
ds2 + dz2: dy ddz, into the

tangent of the angleHhG, which above was shown to be−dy
√
ds2 + dz2: y dx dz,

is obtained the equation

(y ddx+ 2 dy dx) ·
(
ds2 + dz2

)
: y dx dz ddz = 1,

or

yy ddx+ 2y dy dx

yy dx
=

1

2
× 2 dz ddz

ds2 + dz2
.

Taking integrations by logarithms,

log yy dx = lb+ log
√
ds2 + dz2,

and making the change back to numbers,

yy dx = b
√
ds2 + dz2;

this equation exprsses the nature of the projection LBC.
Because z, by the nature of the Conoid is given in y and constants, it is

put dz = p dy, understanding by p any function whatever of y itself. In the
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equation found, yy dx = b
√
ds2 + dz2, if for dz is written p dy, and for ds2 is

substituted its value dy2 + yy dx2, which being done, will have

dx =
b dy

y

√
1 + pp

yy − bb
;

in which equation, because the distinct parts are not limited, it is possi-
ble to have constructed the curve of the projection LBC by quadratures,
this completed, if from the single points L,B,C, etc., are erected normals
Ll,Bb,Cc,etc., the surface of the given Conoid meeting in the points l,b,c,
etc., will be designated in the said sought-for surface curve lbc. Q.E.F.

First Example

If the given Conoid were the surface of a plane, parallel to the plane of
projection ABK, it would contain z, and indeed dz = p dy = 0; in conse-

quence, p = 0, and the general equation dx = b dy
y

√
1+pp
yy−bb is changed into

this, dx = b dy
y
√
yy−bb , or, in multiplying by b, b dx = bb dy√

yy−bb . The latter member
bb dy√
yy−bb is an element of a circular arc, whose radius = b and secant = y; if

this arc is called A, [having set the radius AK (Fig. 5) , which is arbitrary
and assumed to be unity], x = A. Therefore, because y is always secant of
the angle x or A, it is well known that the sought-for line is right, any circle
whose radius is b, touches. If the given Conoid is a Cone, whose axis is to
the base radius as n is to 1, so that x = ny, dx = p dy =, dy, and indeed
p = n, and the equation to the projection

dx =
b dy
√

1 + nn

y
√
yy − bb

, or
b dx√
1 + nn

=
bb dy

y
√
yy − bb

and having obtained the integrals,

bx√
1 + nn

=

∫
bb dy

y
√
yy − bb

,

which is the arc of a circle with radius b and secant y. Which if called A,
then bx:

√
1 + nn = A, or (once more setting AK = 1 = b), x:

√
1 + nn = A.

Thus this equation can be constructed.
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At the center A (Fig. 8), the circle LEF is described by the radius
AL = b, which the line LD touches in L. From the center A is drawn out the
secant AED, which meets the circumference LEF in E, and if the tangent
LD in D, the angle LAF to the angle LAE is taken as

√
1 + nn to 1, and

AF is produced as far as needed in B. Given the center A, the radius AD is
described the arc of the circle DB orthogonal to AFB, occurring in B. This
being done, point B will be to the desired projection LBC.

Corollary

If
√

1 + nn be a rational number, the curve LBC of the projection will be
algebraic. Because it happens, as often as r be supposed be any number,
whole or fraction, we shalll have n = (1 − rr):±2r, or n = ±2r: (1 − rr);
such a procedure is well known, put in place by the Diophantean method√

1 + nn = r + n, and
√

1 + nn = 1 + rn.

Example III

dx = b dy
y

√
1+pp
yy−bb Let the given Conoid be a Sphere, whose radius = a, center the point A.

By the nature of a Sphere

z =
√
aa− yy, dz = −y dy:

√
aa− yy, and p = −y:

√
aa− yy.

Substituting this value into the general equation, the latter is changed into∗

dx = ab dy: y
√
yy − bb ·

√
aa− yy. ∗

∗From this equation it can immediately be deduced (the expression above being con-
sidered the most complex which supports this) that the sought-for shortest curve on the

surface of the sphere is a great circle. Indeed, because the latter part ab dy: y
√
y2 − b2 ·√

a2 − y2 is proportional to the differential of the arc of the great circle, whose sine is

n
√
a2 − y2: y (where by n I mean ab:

√
a2 − b2), as is certainly accessible to anyone who

wishes to prove this, and because the quantity n
√
a2 − y2: y is itself proportional to the

tangent of the meridian arc cut off between the points b and E, the shortest curve cbl on
the surface of the sphere must be of the same nature, so that the sine of the arc KE is to
tangent of the arc Eb in constant ratio. Moreover it is established in Spherical Trigonom-
etry that this coincides with an arbitrary great circle, which in the point K obliquely cuts
the circle KE which is assumed for the base. Indeed, it is everywhere, as the total sine is
to the oblique tangent, so the sine of the indeterminate arc KE is to the tangent of the
corresponding arc Eb. Therefore the shortest curve on the surface of the sphere is a great
circle arc.
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In order that the latter member ab dy: y
√
yy − bb ·

√
aa− yy be reduced to

a simpler form, we take y = ab:u, so that dy = −ab du:uu, and it is found
that, the substitution being made,

−u du:
√
aa− yy = −n du:

√
aa− uu · uu− bb.

Furthermore, having put uu = cv, and 2u du = c dv, which being substituted,
results in

−u du:
√
aa− uu ·

√
uu− bb = −1

2
dv:
√
−aabb: cc+ (aa+ bb)v: c− vv;

in addition, make −v(aabb): 2c− t, and −dv = dt, and the calculation being
carried out results in

−1

2
dv
√
−aabb: cc+ (aa+ bb)v: c− vv = −frac12 dt:

√
(aa− bb)2: 4cc− t,

and multiplying either member by (aa− bb): c,

(aa− bb) dx: c = (aa− bb) dt: 2c
√

(aa− bb)2: 4cc− tt,

and obtaining the integrals,

(aa− bb)x: c =

∫
aa− bb

2c
dt:

√(
aa− bb

2c

)2

− tt

which is the arc of the circle whose radius is (aa− bb): 2c and right sine is t,
which arc if called A, will have (aa − bb)x: 2c = A, or (taking the arbitrary
radius AK[1] = radius (aa− bb): 2c), 2x = A.

The curve of the desired projection leads to the conducting of this calcu-
lation by this method: By the center A and radius AK = (aa = bb): 2c, the
circle KEF is described, and led out until it reaches the line AE; the arc
KF = 2KE, and FG will at the point F be normal to the extended radius
AK = t. From here, if in AE, if the work be produced, it is taken that

AB = y = (by construction) ab:u = ab:
√
cv = ab:

√
1

2
aa+

1

2
bb− ct,
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so that the point B will be in the curve of the desired projection. But with
this curve being algebraic, just as is well known from the construction, it
is appropriate to investigate the algebraic equation between the rectangular
coordinates AH,HB. It is asserted/named to this end that AH = p, HB = q.
Because the angle FAK is bisected by the line ANE,

FA+ AG:FG = AG:GN,

or[
(aa− bb) : 2c+

√
(aa− bb)2 : 4a− tt

]
: t =

[√
(aa− bb)2 : 4c− tt

]
:GN,

where

GN = t

√
(aa− bb)2 : 4cc− tt.

Because of the similarity of the triangles AGN ,AHB,

AG:GN = AH:HB,

or√
(aa− bb)2 : 4c− tt: t

√
(aa− bb)2 : 4cc− tt:

[
(aa− bb) : 2c+

√
(aa− bb)2 : 4cc− tt

]
= p: q,

where they are considered to be mediums and extremes to each other; and
dividing each side by √

(aa− bb)2 : 4cc− tt,

we shall have

q = pt:

[
(aa− bb) : 2c+

√
(aa− bb)2 : 4c− tt

]
;

hence

q

√
(aa− bb)2 : 4cc+ tt = pt− aaq: 2c+ bbq: 2c.
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If each member of this equation is raised to the square, it is found that,
removing that which is demolished,

ct− (aa− bb)pq: (pp+ qq).

Because the triangle AHB is right, we shall have

AB2 = AH2 +HB2,

or

yy = aa bb: (
1

2
aa+

1

2
bb− ct) = pp+ qq,

which being reduced gives

ct =
1

2
aa+

1

2
bb− aa bb: (pp+ qq),

or

pp+ qq = 2 ((aa− bb)pq + aa bb) : (aa+ bb),

which equation pertains to the Ellipse DBE, whose major semiaxis AD = a,
minor AD = b, rectangular coordinates AH = p, HB = q, showing that the
angle DAH is semi-right.

For sending down BC normal to AD, and calling AC = x, BC = y, we
shall have x + y = q

√
2, and x − y = p

√
2; and removing q and p from the

equation

pp+ qq = 2 ((aa− bb)pq + aa bb) : (aa+ bb),

we shall have

aa yy + bb xx = aa bb.

Note

The general equation dx = b dy
y

√
1+pp
yy−bb proves to be consistent with the Solu-

tion of the Celebrated Jac. Bernoulli in Act. Erud. Lips.,, year 1698, pub-
lished on page 227. For if in his formulat

∫
at dx:xx

√
xx− aa, y is written
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for x, and b for a, the result is
∫
bt dy: yy

√
yy − bb, where for t is written its

value y
√
dy2 + dz2: dy, and for dz, as above, p dy, we shall have

∫
b dy
y

√
1+pp
yy−bb .

But the Worthy Gentleman deduced this solution with no uncertain foun-
dation. For if he had extended the method to every kind of curved surface,
certainly he would have given a general solution to the Problem posed by his
Brother. The following method is generally extended with difficulty to the
conceived problem.

Give the Conoid ACEBDA, whose axis AB be right to the circular base
ECD, let the sought-for line be KPIG. The surface ACEA is divided into
infinite sectors, prolonged to the meridians APN , AIf , AGF , etc., infinitely
close, and by the points P ,I,G, etc., where these meridinans cut the curve
KPIG, extending tangents PL, IL, GL, etc., cutting the axis AB in the
points L,L,L, etc., separated from each other by an infinitely small distance;
whence any two points L, L, where two very close tangents, e.g. GL and IL,
cut the axis, can be considered as one and the same, and consequently the
figure LGIL can be considered as a triangle, and similarly is understood the
remainder LIPL.

The plane of the triangle GLI is conceived as the axis near IL slighly
lifted up, until with the following triangle ILP it constitutes one same plane
GLP . Similarly, this plane GLP is conceived as near the line PL, until it
exists in the same palne with the following triangle, and this

is continued along until LGIPKL be reduced into a plane. (See Fig.
12.) Thus, this being done, it is manifest that the line KOPIG reduced into
the plane will obviously be the shortest straight line in the plane. Thus by
nature of a straight line, the angle GLI is the equal of the different angles
LIK, LGK; the angle ILP = LPK − LIK, etc.; that is, the angle which
the nearest touch, v.g., GL and IL, include in a point L of the axis, where
are thought to coincide, is equal of the different angles LGI or LIP , which
touching LG or LI make with the curve KPIG in G or I.

From this foundation the nature of the curve KPIG will be investigated.
Through whatever point on the supposed curve G (Fig. 11) is drawn part
of the circle of parallel Gg, intercepted by medians AGF and AIF . From
the points G and g are drawn to the axis AB normals GH, gH, and from
the points F ,f to the center of the base B the lines FB, fB. Assuming the
radius of the base BC = BF = 1, setting GH = x, whose element fF = dx,
a small arc of the meridian Ig = ds, and the tangent GL or IL=t.

Because of the similarity of the sectors BFf , HGg, BF :HG = Ff :Gg,
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or 1:x = dx:Gg. Therefore Gg = x dx. Hence the angle GLI = Gg:GL =
x dx: t.

The complement of the angle LIG in the semicircle is the angle GIg,
whose tangent is to the radius as Gg to gI; wherefore, setting the radius
= BC = 1, it will be the tangent of the angle GIg, or, by only a change of
sign, the tangent of the angle LGI = −Gg: gI − x dx: ds. Therefore

an element of the angle LGI = −d
(
x dz

ds

)
:

(
1 +

xx dz2

ds2

)
.

But by the foundation provided above, the angle GLI is an element of the
angle LGI; therefore is had the equation

x dz

t
= −d

(
x dz

ds

)
:

(
1 +

xx dz2

ds2

)
;

or because x: t = dx: ds,

dx dz

ds
= −d

(
x dz

ds

)
:

(
1 +

xx dz2

ds2

)
;

By integrating his equation, it is put that x dz: ds = v, and the substitu-
tion having been made,

v dx:x = −dv: (v + v3) = −dv: (1 + vv),

or

−dx:x = dv: (v + v3) = dv + 3vv dv): (v + v3)− 3v dv: (1 + vv);

and supposing integration by Logarithms,

l(d:x) = l(v + v3)− 3

2
l(1 + vv) = lv − 1

2
l(1 + vv),

where

a:x = v
√

1 + vv, and a:
√
xx− aa = v = x dx: ds;

and finally

dx = a ds:x
√
xx− aa.
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Same Problem

To draw the shortest line on a given arbitrary curved surface.
By the method of maxima and minima

Solution. Having conceived on the horizontal plane AEC, from each
of the points a, b, and c, on the desired curve, to have let fall perpendiculars
aA, bB, cC, etc., which form the curve of the projection, any two contiguous
elements of which are represented by AB, BC. Through A and B are drawn
AE, BD, as elements of the abscissae, and EB, DC as elements of the
projection of the curve near to the leading perpendiculars. Again, the point
B in the prolonged element EB is understood to fall towards the very near
location ζ, which corresponds to the point β on the curved surface; but itself
cut by the vertical plane crossing throught the line L′BF , that cut forming
a curve, which, because of the given surface, and itself is a given curve.
Therefore, the subtangent at the point B or E (because, just as is BE an
infinitely small element, the subtangent is certainly the limit), answering
= T ; And calling AE = f , BD = g, EB = m, DC = n, the vertical element
Bb, that is Bb − Aa = c; the vertical element Cc, that is Cc − Bb = e;
bc =

√
gg +mm+ ee. The element of the sought-for curve will be

ab =
√
ff +mm+ cc, and bc =

√
gg + nn+ ee.

Therefore, the quantity√
ff +mm+ cc+

√
gg +mm+ ee

should be a minimum; differentiating therefore, (taking AE and BD, or f
and g to be constants),

mdm+ c dc√
ff +mm+ cc

+
n dn+ e de√
gg +mm+ ee

= 0.

Whence, because m+ n, like c+ e, are constants, thus

dn = −dn, and de = −dc,

so that

mdm+ c dc√
ff + nm+ cc

=
n dm+ e dc√
gg + na+ ee

.
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However, in order that dm and dc can be eliminated, it is required of them
the ratio, which be made thus: Saying that Bb = z, evidently T : z = Bζ, or
ζβ − Bb or dc; and indeed dc = z dm:T , because, substituting in the given
equation, and dividing it by dm, and multiplying it by T , will produce

mT + cz√
ff +mm+ cc

=
nT + ez√
gg + nn+ cc

,

where not yet discovered is the uniform progression from the elements AE
and DB to the elements BD, DC, because the common members of each
equation are T and z; on account of which I arrange this in the manner

T× n√
gg +mm+ ee

− m√
ff +mm+ cc

= z×
(

−e√
gg + nn+ ee

+
c√

ff +mm+ cc

)
.

Here, in the infinitely small factors is clearly observed a uniformity; for each
denotes a uniform differential fraction of similar compound elements, so writ-
ten n, g, e, these, which represent dy, dx, dz, we have

T × d

(
dy√

dx2 + dy2 + dz2

)
= z × d

(
dz√

dx2 + dy2 + dz2

)
,

in which equation nothing constant is supposed, and therefore some element
may be freely supposed invariable. Therefore we assume, as in Klingen-
stierna’s Writing, the constant

√
dx2 + dy2, or ds, in order that the equation

is expressed in this manner:

T × d
(

dy√
ds2 + dz2

)
= z × d

(
dz√

ds2 + dz2

)
,

which fractions being differentiated, changes to

dz ddz

ds2 + dz2
=
T ddy + z ddx

T dy + z dz
,

equivalent to that given in the Additions to the previously cited writing, in
order that the desired calculation is clearly seen. Because if in truth for
constants are assumed AB itself, or the element of the desired curve, that
is,
√
ds2 + dz2, an extremely simple equation emerges, certainly: T ddy =

−z ddz. But nonetheless, this cannot generally be reduced to principal dif-
ferences.

25


